to index              2015_09_16 Previous lecture note             LECTURE NOTE    2015_09_17           2015_10_07 Next lecture note


Helium and 2 electron atomic systems: more on spin.   Orthohelium, Parahelium.
Doubly excited states.         Configuration Mixing - from the expansion theorems.

First we revisited the magnetic moment - angular momentum  -  and spin relations.

And addition of angular momentum mechanisms

Two types of helium spectra  - Orthohelium, Parahelium.  The origin of the energy differences

Doubly excited states of Helium  (this will not be of interest for other 2-electron systems - why? )      

Configuration Mixing - from the expansion theorems.

Angular momentum - Magnetic Moment    g=1 for  L to M        g=2    for  s  to  m    (  spin  )
en.wikipedia.org/wiki/Magnetic_moment   Long article on magnetic moment, definition etc
en.wikipedia.org/wiki/Magnetic_moment#Magnetic_moment_and_angular_momentum
en.wikipedia.org/wiki/Magnetic_moment#Magnetic_moment_of_an_electron

      xcf_0000_Magnetic_Moment.png

       xcf_0000_Magnetic_Moment.png

Above, bottom: 2 electrons product wavefunction including spin description
        ( the spin 'wavefunction' is not really a function as e.g. 1s state radial; for us it can be a 2x1 (column) matrix )

Next plate:   We find many illustrations of addition of angular momenta - from 'sort of everyday life'

      xcf_0005_addition_angular_momentum.png

       xcf_0005_addition_angular_momentum.png

                                             Addition of angular momenta - see the trianle rule below
Pauli Exclusion Principle  --  and Exchange symmetry  -  Identical Particles 
the Aufbau Principle  -->  Exclusion Principle   (Build-up Principle)      
                                            Exclusion Principle    justified by Fermi Statistics
                                                                                 identical particles  -->  Invariance for exchange of particles
the exchange of positions must not change the PROBABILITY DENSITY    ;   phase        --> plus / minus 1

Antisymmetry  -  the    minus 1  possibility    -->   leads to exclusion principle
                                                                                                   exclusion principle   TRUE IF electrons are Fermions
      xcf_0010_exclusion_principle.png

       xcf_0010_exclusion_principle.png

Above:    the exchange of positions must not change the PROBABILITY DENSITY
Below:
           But we must include both spin and space!
                                And spin and space must be INDEPENDENT
                                                                                   INDEPENDENT     --->    PRODUCT wavefunctions
      xcf_0020_Fermi_Bose_identical_particles_exchange_symmetry.png

       xcf_0020_Fermi_Bose_identical_particles_exchange_symmetry.png

Space SYMMETRIC                          spin ANTISYMMETRIC
Space  ANTISYMMETRIC                spin SYMMETRIC    

L-S coupling        vs     j-j coupling
      xcf_0030_Exchange_Symmetry_L-S-j-j-couplimgs.png

       xcf_0030_Exchange_Symmetry_L-S-j-j-couplimgs.png

Above:      spectroscopic notation
Below:      towards the explanation of the    ORTHOHELIUM - PARAHELIUM energy difference
      xcf_0035_Triplet_SInglet_SYM_ANTISYM.png

       xcf_0035_Triplet_SInglet_SYM_ANTISYM.png

Overview of the "symmetry properties"   i.e.  how must the states be combined
      xcf_0039.png

       xcf_0039.png

ORTHOHELIUM - PARAHELIUM difference in energy explained
      xcf_0040_Triplet_SInglet_SYM_S-1_ANTISYM_S_0.png

       xcf_0040_Triplet_SInglet_SYM_S-1_ANTISYM_S_0.png

Two spin states explained    singlet  S=0  ( 2 S + 1 = 1 )      triplet  S=1   ( 2 S + 1 = 3  ) 
      xcf_0041.png

       xcf_0041.png

ORTHOHELIUM             -     PARAHELIUM              difference in energy explained
  triplet  S=1     (SYM)               singlet  S=0       (ANTISYM )
space         ANTISYM                  space             SYM
repulsion     reduced, small       repulsion LARGE          
                                                                                          ORTHOHELIUM         below     PARAHELIUM
      xcf_0043_Symmetric_Antisymmetric_Spectra.png

       xcf_0043_Symmetric_Antisymmetric_Spectra.png

Ground state      and     singly excited states    -   the Configurations
      xcf_0100_Doubly_excited_States.png

       xcf_0100_Doubly_excited_States.png


Doubly excited states
       - detailed energy levels

This energy level diagram shows the binding energies of the  ground state,
ortho-helium, parahelium singly excited states, the ionization threshold state and
the spectrum singly ionized helium - and the threshold for doubly ionized He - the alpha-particle

The electron repulsion "pushes" the doubly excited states of He to regions above the
    single ionization threshold   ( see diagrams on autoionization below )
so that all doubly excited states are autoionizing states
                (    this is not allways the case for other Z than 2, but very energy relations shown below are valid )

A de-excitation via an autoionization is often calle Auger process or non-radiative transition as opposed to radiative deexcitation
      xcf_0110_Doubly_excited_States.png

       xcf_0110_Doubly_excited_States.png

Doubly excited states  energy diagrams
      xcf_0115_Doubly_excited_and_de-exciting.png

       xcf_0115_Doubly_excited_and_de-exciting.png

 Doubly excited states - AUTOIONIZATION

The energy is conserved; 
We see that the sum of energies in                     the          second          and                  third                   picture
are EQUAL.  Therefore the system can go from one to the other state - no energy involved

The first picture - to get there, we must somehow excite 2 electrons at the same time
      xcf_0130_Autoionizing_states.png

       xcf_0130_Autoionizing_states.png

Configuration mixing    -  formal argument    - Expansion in a basis
      xcf_0200_Configuration_mixing_from_expansions.png

                                                                                                                                    xcf_0200_Configuration_mixing_from_expansions.png

The above formal configuration mixing formula illustrated as a sum of energy-level diagrams
                                                                                                                                     configuration_mixing.png

       configuration_mixing.png


The concept of configuration mixing  is important in many areas of quantum many-body theories;
For atoms, molecules, solids, Nuclei etc ....

to index              2015_09_16 Previous lecture note             LECTURE NOTE    2015_09_17           2015_10_07 Next lecture note