to index              2015_11_25 Previous lecture note             LECTURE NOTE    2015_11_25           2015_12_03 Next lecture note


Light -Atom Interaction - Part 4


In this part
     1. we evaluate the details of the light emission rates
     2. discuss the stimulated emission
     3. shortly mention the laser
     4. shortly discuss the physics of molecules - and their spectra


The notation here should be now clear: Golden Rule, Probability change rate W, density of states

The interaction HI  has been discussed - comes basicaly from the Lorentz Force

      010_Golden_Rule.png

       010_Golden_Rule.png


The momentum operator p is the momentum of the electron; A is the operator of the "vector potential" of the field
And thus expressed using the mode's creation, anihilation operators
Note that we must be summing over "all the modes";  e the polarization vector
Initial and final states are mentioned - here generally   -  see below for a more specific discussion

Note that there is also a definition of the "transition frequency" in terms of energies

      020_Golden_Rule_Applied.png

       020_Golden_Rule_Applied.png


Next slide - everything is inserted - the constant expressing the field dimensions (square root....),  density of states etc

      030_Golden_Rule_Applied_details.png

       030_Golden_Rule_Applied_details.png


   Here are the details of the matrix element evaluation
   what are electronic (red) and what are field (blue) components
   As mentioned before, the field is quantized, its description is in terms of creation/anihilation expressions
            but the "eigenmodes" are in the normal 3-dim space - so they will be the same as the electron coordinates
                                                                           (   the exp(i k r ) - r is the same coordinate as the electron )
                                            Also note the problem    exp(i k r - i omega t )    and exp( - i k r + i omega t ) - seems to be
                                                                           inconsistent conventions   - we do not have the solution yet 

      040_Matrix_Element_details.png

       040_Matrix_Element_details.png


  Further simplifications  - so called Dipole approximation
                  first  -  long wavelength approximation, get rid of the exponential exp ( i k r )
                  then transform the p-operator matrix element  to the matrix element of r - that makes the dipole

      050_dipole_approximation.png

       050_dipole_approximation.png


More on Dipole approximation
                   transforming the p-operator matrix element  to the matrix element of r - that makes the dipole
                   using the commutation relation  [ r, H ]


      060_dipole_approximation.png

       060_dipole_approximation.png


    Working with the "density of states "    when discussing that - we left the integration over the directions open
       now we shall perform the integration over directions
       This is somewhat too detailed, discussed only for completeness

       This is done in a clever way:   the  < b |   p  |  a   >    is a given vector (three numers, while vector p is 3 operators )
                                                       Thus this vector is chosen as a definition of the z-axis, very clever!
                                                       Mentioned at the end of this slide, used in next slide

      070_evaluation_details_emission_angle.png

       070_evaluation_details_emission_angle.png


   Working with the "density of states "      - performing the integration over directions
             (   This is somewhat too detailed, discussed only for completeness   )

       This is done in a clever way:   the  < b |   p  |  a   > = P'   is a given vector (three numers, while vector p is 3 operators )
                                                       Thus this vector is chosen as a definition of the z-axis, very clever!

        This also includes summation over the polarizations  -  even more clever trick - with this choice of axes
                                                                                      only one polarization   ( but in "real space" no such exclusion! )
                                        ( look at the rounded frames ..... the 0 scalar product)

      080_evaluation_details_emission_angle.png

       080_evaluation_details_emission_angle.png


     Now this is combined into the expressions from before, look at the simple integral giving the 8 pi/3 result

      090_evaluation_details_emission_angle.png

       090_evaluation_details_emission_angle.png

----
      100_Final_result_Physics_dimensions.png

       100_Final_result_Physics_dimensions.png


     Understanding stimulated emission in the language of creation/anihilation operators
     This is really one of the nicest results here

      110_stimulated_emission.png

       110_stimulated_emission.png


     The story of the LASER  - a popular presentation - this explains "Population Inversion"

      180_population_inversion.png

       180_population_inversion.png


 The laser light is ( ideally ) much more a "classical wave" than "stream of photons"
 Nobel prize winner Roy Glauber ( just turned 90 this november, congratulations! ) explained this
 Glauber states       http://folk.uib.no/nfylk/PHYSTOYS/glauber/

      190_coherent_states_H.O.png

       190_coherent_states_H.O.png


    The basics of Molecular physics

     Why are molecules bound states    -  electronic states   - H2+   example  (hydrogen molecule ion )

      250_Molecular_Binding_Spectra_etc.png

       250_Molecular_Binding_Spectra_etc.png


Electronic states in a homonuclear molecule (bothe nuclei the same, homogeneous ... )

      290_molecular_binding.png

       290_molecular_binding.png


   Three types of molecular spectra
        - electronic states    (  ~  eV )
        - vibrational states   (  ~ 0.01  eV )
        - vibrational states   (  ~  0.001 eV )

      300_molecular-spectra_elctr_vibr_rot.png

       300_molecular-spectra_elctr_vibr_rot.png



It might be of interest to look at older notes, for example
      http://web.ift.uib.no/AMOS/PHYS261/2011_11_10/
                   where we have listed also even older links
                   Molecules
                     http://web.ift.uib.no/AMOS/PHYS261/03.11.12/index0.html
                   Exotic Atoms
                     http://web.ift.uib.no/AMOS/PHYS261/2004.11.18/index0.html
                     2004.10.07 Blackboard shots; Molecular Physics
                                                 Pictures of molecular states 
                     2004.10.27 Blackboard shots; Last part Molecular Physics

                   Lecture: Physics of Molecules
                      2004.11.17 Short blackboard shots; Effects, Structures Spectra. Dirac equation
                      2004.11.18 Blackboard shots; Effects, Structures Spectra. Exotic and Hollow Atoms


to index              2015_11_25 Previous lecture note             LECTURE NOTE    2015_11_25           2015_12_03 Next lecture note