to index             2016_09_21 Previous lecture             LECTURE NOTE   2016_09_22           2016_09_28 next lecture note


     Many electron atoms - part 3



     We started by reviewing the variational approach to Schrödinger "derivation", how to justify that
     only one variation of phi appears, and only on "the left side".
    The usual argument is that  - if formulated with integrals - the Phi   and  Phi* are two independent
    variable functions, so that we must consider variation of both - and we start with the variation of the
    Phi*  -  or in Dirac notation  -  the   <   |    vector.  And that already brings the desired result, we do not
    need to continue to the condition for Phi

      0010_Variational_derivation.png

       0010_Variational_derivation.png


    Applying the same to variation of many-electron energy
    Notation issues:
        1.  Variation of the whole function - all the occurencies of e.g. alpha must be replaced by its variation
             i.e. for all position variables rk    -   and because of the overlaps-conditions  only the terms indicated below
             remain nonzero
         2.  Variation of terms including the two-paricle operators   -  we do not have a simple notation

               < a  b  |   V(1,2)  |  c d  >    is the double - integral
                  <  b  |   V(1,2)  |   d  >     - one of the variables, say 2, is not integrated over so that   G(1) =  <  b  |   V(1,2)  |   d  >
               This has been discussed in the following slides

      0020_Meaning_of_the_notation.png

       0020_Meaning_of_the_notation.png

 
             < a  b  |   V(1,2)  |  c d  >     denotes the double - integral
                <  b  |   V(1,2)  |   d  >     - one of the variables, say 2, is not integrated over so that   G(1) =  <  b  |   V(1,2)  |   d  >
      perhaps we should use
                 (  b  |   V(1,2)  |   d  )       - to indicate that it is not the same as the     

             This has been discussed in detail here in this slide - in the colored part

        REMINDER OF THE Hartree - Method  -  interaction with the charged cloud

      0030_Connection_with_Hartree_method.png

       0030_Connection_with_Hartree_method.png


     The details of the Hartree-Fock equations  -  best seen with the notation with integrals
     The direct term is simple
                                           The exchange term - note the summation

     Non-locality of the exchange term

      0043_exchange.png

       0043_exchange.png


     Non-locality of the exchange term
                Hand-written part - what is non-local operator
                           we start with the superposition statement
                          and show the origin of the unit-operator relation
                          including the projection operators                        |  a  >  <  a  |

      0050_Local_nonLocal.png

       0050_Local_nonLocal.png


    Unit operator  - containing projection operators             |  a  >  <  a  |

    Generalized to eigenstates of position    integrals - and delta-functions  involved

    What follows:  basically all operators should be non-local;
                           our favourit  multiplication operations, as the discussed potential operation
                           contain the delta - function

                           The exchange potential appears by construction non-local

             Solution of Hartree- Fock equations  - they contain "integro-differential equations" for the orbitals
             Usually some further approximations


      0060_Local_nonLocal.png

       0060_Local_nonLocal.png



     Next time -
                    (a)   DFT - density functional theory
                    (b)   configuration mixing
                    (c)   spectroscopic terms   -  notation of  L S J states         (angular momentum, spin, and total J )



to index             2016_09_21 Previous lecture             LECTURE NOTE   2016_09_22           2016_09_28 next lecture note