to index             2016_11_02 Previous lecture             LECTURE NOTE   2016_11_03           2016_11_09 next lecture note

   
       
Light and Atoms Part 4
 
       1. Overview of the time-development - and harmonic systems

       2. Electromagnetic waves - the field - and quantization   

       3. The model for an atom and the field

       4. Putting it all together - Golden rule evaluation

       5. Approximations

       6. Discussion of the result - Atomic units


   First plate:

   Golden Rule -  recall the 1 level embedded in continuum of the other type levels
   Our system - 2 subsystems
                      the atom
                      the field     (... its collection of eigenmodes)
                                       actually, each eigenmode has its own Harm.Osc.-number state
                      The interaction part  Hint   - still not described     ( denoted also as   HI )
      00010.png

       00010.png


       Some of the features of radiation mode electromagnetic field - no scalar potential; E and B symmetric, Vector "potential" A
       Gauge invariance with respect to modifying vector and scalar potential

      00023.png

       00023.png


     Wave equation for A; we can quantize A - i.e. eigenmodes of the A-waves; The  energy of the field (energy density)

      00024.png

       00024.png


       To set up the quantized field - we need the transformation to the dimensionless analogues of Q and P in the Harm.Osc. part
       Shortcut  -  since we do not have the "displacement" idea in a simple way - but we have

                        two expressions for total energy        - the integral over density   - and the sum over number operators

       The requirement that these two are EQUAL  leads to the complicated pre-factor in the square root (eq. 43 in the snapshot)

      00025.png

       00025.png


    Towards the discovery of the Hint   ( denoted also as   HI )  - the hamiltonian via lagrangian
    A short reminder of what is the Lagrange method; Newton equations, potential energy; this only for conservative forces

      00040.png

       00040.png


        This is to remind us about no scalar potential; but the Lorentz Force is general (this plate reappears modified below)

      00045.png

       00045.png


      ( Here we started by remembering the "current" .... )
    
      The interaction term is derived from the hamiltonian of a charged particle in electromagnetic field
      which appears as a modification of the kinetic energy term

      Note tht the relation    p = m v  is not valid any more  -   we should return to this point later

      A4.png

       A4.png


       Summary of the model - and the interaction term

      A5.png

       A5.png


        Applying the Golden Rule

      B1.png

       B1.png


   Why is there the "electron" coordinate in the description of the FIELD  
   The field is described in terms of the eigemodes   -  but each eigenmode is present in the the space points
                                                                                   ( see the eigenmodes "displacements" in the vibrating chain example)

    Finally, all the dimensional quantities are collected

      B2.png

       B2.png


        The final expression for the rate - discussion of the angular integration  ( here taken in a very short version
                                                                                                                          we should return to this point)

      C2.png

       C2.png


      Schematics of the matrix element evaluation    ( the field quantities are blue, electron quantities are red )

      C4.png

       C4.png


       So called dipole approximation  -  this leads to a simpler expression
                       also called long wavelength approximation

      A6.png

       A6.png


      Discussion of the final expression for the transition rate  and the associated "lifetime"

      transformed to atomic units      -  the fine structure constant alpha to the third power!!
                                                       -  it scales with Z  - fourth power

      C6.png

       C6.png



  Next time:      Summary;
                         missing steps and clarifications; 
                         STIMULATED EMISSION
  


to index             2016_11_02 Previous lecture             LECTURE NOTE   2016_11_03           2016_11_09 next lecture note