to index             2016_10_27 Previous lecture             LECTURE NOTE   2016_11_02           2016_11_03 next lecture note

Light and Atoms Part 3


     1. How to work with continuous systems - fields - in Quantum Mechanics - Vibrating systems

     2. Normal modes of harmonic systems
         Normal modes of coupled vibrations

    3. Normal modes - total energy is a sum of energies in normal modes - independent oscillators

    4. Quantum mechanics of a Harmonic Oscillator - Algebraic Method

    5. "Quanta" - creation and anihilation operators


     Review of the last work: the Quantu mechanics of time developement in one slide

      sc_0100_resume_of_time-dependent_QM.png

       sc_0100_resume_of_time-dependent_QM.png


    Continuous systems  --> Discretization, Mesh of points

      sc_0200.png

       sc_0200.png


     Topic in classical mechanics: Small vibrations (i.e. LINEAR SYSTEMS) Normal modes or Eigenmodes

     In the following - Linear algebra; From one particle to a system - coordinates placed in a column vector
                                scalar product  matrix product of transverse (row vector) with the column vector in question
                                "coupling terms"  - nondiagonal terms in a matix
                                (for generality - we allow that also the "mass matrix" can be present - usually that will be diagonal)

    Finding the eigenmodes  -  means than finding the eigenvectors and eigenvalues of the problem - as outlined below

      sc_0210_General_coupled_oscillations.png

       sc_0210_General_coupled_oscillations.png


     We ( from Goldstein's classicalt book ) even get all new "masses" equal to one
    and the original total energy
                                                is then written as a sum of independent terms (no matrix, no coupling)

    These resulting independent oscillations we call normal modes - or eigenmodes

      sc_0220_NORMAL_MODES_coupled_oscillations.png

       sc_0220_NORMAL_MODES_coupled_oscillations.png


    Examples - vibrations of a "string" or "rope"  realized as "discretized" into balls on strings
    the dynamic variables are then the displacements un of each "ball"  - kinetic energy straightforward;
        the deformation energy of each string  is  1/2 k  ( un - un  )2   where k s the string constant - see later how it relates to frequency omega
        ( this comes in the section on a single Harmonic oscillater later)

    In 1 dimension - only longitudinal displacements - but we plot them in the y-direction

     Also - relation between the shown sum over eigenmodes    and   Fourier expansion
                                                                                 For large systems the normal modes will be of sine / cosine  form

      sc_0300_rope_as_string_of_balls.png

       sc_0300_rope_as_string_of_balls.png

 
     The eigenvalues (eigenfrequencies) and eigenvectors (eigenmodes) can be visualized by a simple matlab code
     The coefficients of expansion are shown as y at the position of n*a

     The diagonalized matrix is shown below for the case N=10

      sc_0400Matlab_eigenvalues_matrix.png

       sc_0400Matlab_eigenvalues_matrix.png


      More about the vibrating (longitudinally) strings

      sc_0500_waves_in_1-dimension.png

       sc_0500_waves_in_1-dimension.png


    ANOTHER MODE  from the above matlab code ...
 
      sc_0700_Matlab.png

       sc_0700_Matlab.png


    Algebraic method for an harmonic oscillator 

    the variable is not x but q - and the tricks are to transform  q and p to dimensionless Q and P  - with hbar omega as the
    energy scale factor    Remember   omega  is  2 pi times frequency f 
               ( and note that we rewrite the "spring constant"   k    in  terms of omega and mass )

    So the commutator for dimensionless Q and P is also dimensionless    
 
               see operators    a   and   a+    - just clever linear combinations of  Q and P

      sc_0800_Algebraic_Harmonic_Oscillator.png

       sc_0800_Algebraic_Harmonic_Oscillator.png


     Commutator of         a   and   a+ 

      sc_0900_Harmonic_Oscillator_transf.png

       sc_0900_Harmonic_Oscillator_transf.png


     Towards the  Number operator         N  =  a+ a     and further commutators

      sc_1000_Harmonic_Oscillator.png

       sc_1000_Harmonic_Oscillator.png


      Commutator of      N  =  a+ a        a+   and    a 
 
      sc_1100_H.O._Number_Operator.png

       sc_1100_H.O._Number_Operator.png

 
     And the states of Harmonic oscillator  are described as eigenstates of  N and connected by the ladder operators

      sc_1200_H.O._Number_Operator.png

       sc_1200_H.O._Number_Operator.png

 
   And the states of Harmonic oscillator  are described as eigenstates of  N and connected by the ladder operators .....
                 a+   is a creation (of an energy quantum)  and    a      is a anihilation (of an energy quantum) OPERATOR

       operating on the (simultaneous) eigenstates  of  N  =  a+ a     and    H     (because H  is  N times const1 + const2)

      sc_1300_creation-annihilation.png

       sc_1300_creation-annihilation.png


   Summary and spectrum

      sc_1400_creation-annihilation.png

       sc_1400_creation-annihilation.png


     The above story in the notes (mostly)   Highlighted the commutators

      sc_1500_Number_operator_print.png

       sc_1500_Number_operator_print.png


          The above story in the notes (mostly)     -  with numbers instead of a

      sc_1600_creation_anihilaton_print.png

       sc_1600_creation_anihilaton_print.png


     There is also one more aspect of the method: we get the expression for the ground state
     with the help of a first order equation only

     And all the other states by repeated application of derivative and multiplication
     A simple way to generate the Hermite polynomials!

      sc_1700_next_time.png

       sc_1700_next_time.png



  Next time:         1. closing this Harmonic oscillator part;
                           2. How to apply all of this  to the Light - atom interaction (particle in El-Mag field etc)


to index             2016_10_27 Previous lecture             LECTURE NOTE   2016_11_02           2016_11_03 next lecture note