to index             2016_10_26 Previous lecture             LECTURE NOTE   2016_10_27           2016_11_02 next lecture note

Light and Atoms 2


    1. Review the basics of time development
    2. Time dependent perturbation theory - to derive Fermi Golden Rule
    3. The issues of "energy conservation" - the natural line width  ( refer to "the eigenstates" last time )
    4. Density of states  -  from  k-space to energy integral


     The difference between the 2 "identical wells" and one level "embedded in quasicontinuum"
     Oscillations vs  decay

      sc_0100.png

       sc_0100.png


     TDSE  - Time-dependent Schrödinger Equation 
     Either perturbation theory   -  usual in QM courses
     or
     Expansion in a basis - and perturbation theory
     or
     Coupled differential equations for the expansion coefficients   - As we do here

      sc_0200.png

       sc_0200.png


        This method is widey used in many areas of quantum physics
        Jump to the perturbation discussion here - slide     sc_1300.png

      sc_0300.png

       sc_0300.png


      The method also used as syarting point of  TIME DEPENDENT PERTURBATION THEORY  
                                        Jump to the perturbation discussion here - slide     sc_1300.png

      sc_0400.png

       sc_0400.png


      Returning to the  two "identical levels" and one level "embedded in quasicontinuum"
      in the next plate in a formal way.

      sc_0500.png

       sc_0500.png


       Once more - as in the last lecture

      sc_0700.png

       sc_0700.png

    
     Golden rule simulator     http://folk.uib.no/nfylk/PHYSTOYS/golden/      
                                                              here used to show the N=2 two-well oscillation
     
        
                  start value - n=40 states                                                                               Golden rule simulator     http://folk.uib.no/nfylk/PHYSTOYS/golden/   
                  sc_0810.png

   Returning to the 2 types of expansion  

      sc_0900.png

       sc_0900.png


   Returning to the 2 types of expansion 

      sc_1000.png

       sc_1000.png


   Returning to the 2 types of expansion   - here explained in detail

      sc_1100.png

       sc_1100.png

 
   The eigenstates  - the "component" of the initial single state is distributed as in the "natural line width"

      sc_1200.png

       sc_1200.png

  
   "Time dependent perturbation theory"  - without too much "theory".
    We just assume that something is much smaller
    Then we cut away the small things; keep only the dominant ones

    Here we are  taking the above slide    sc_0300.png      and cut away the small parts
    The "smallness" assumptions are listed

      sc_1300.png

       sc_1300.png


     This is the reduction done explicitely

      sc_1400.png

       sc_1400.png


    No coupled equations; Also, not any first order term, ONLY THE DERIVATIVES are  remaining

                    Such Diff. Eq. are very easily solved  - just integrate

      sc_1600.png

       sc_1600.png


       another step  -  get a phase times sine
                                                                         Getting the function of t and omega  ( i.e. the ENERGY DIFFERENCE omega )

      sc_1700.png

       sc_1700.png


       The function F works as a Dirac delta-function  - if we want to integrate over it
      
       Do we want to integrate over it?

      sc_1800.png

       sc_1800.png


   The delta function   -  as the time increases (to infinity ... or eternity .... )

      sc_1900.png

       sc_1900.png

----
      sc_2000.png

       sc_2000.png


      so why we want to integrate  ( we want to "sum" over the "quasicontinuum" - where the probability leaks to )

      sc_2100.png

       sc_2100.png


       Once more with more detail:
            so why we want to integrate  ( we want to "sum" over the "quasicontinuum" - where the probability leaks to )


      sc_2200.png

       sc_2200.png


      And here we get the Golden Rule

      sc_2300.png

       sc_2300.png


      Perturbation theory assumption and golden rule - can not be "correct" for all times - it is an approximation
      Exponential decay      

      sc_2400.png

       sc_2400.png

          Exponential decay
      sc_2500.png

       sc_2500.png


     To get the Line width - the assumption about the unchanged close to 1 coefficient must be replaced by exponentially decrease

      sc_2600.png

       sc_2600.png

    Line width continue
      sc_2700.png

       sc_2700.png


      Line width - Lorentz profile ( Breit-Wigner and resonances )
      Our discussion of the "quasi-continuum eigenstates" explains the line width
     The eigenstates-expansion (stationary states!)  - see this comment in the last lecture - link here

      sc_2800.png

       sc_2800.png


   Density of states  -  from  k-space to energy integral

   whenever we go to an integral from a sum
   we must get the "density of states"  factor

      sc_2900.png

       sc_2900.png


        Integral contains   Delta tau  ( in limit)  but the sum has no Delta tau
       Thus the sum is Integral (containing Delta tau) / delta tau         and    1 / Delta tau  IS the density of states  ( why ?! )

      sc_3000.png

       sc_3000.png


     The factor density of states obtained - but the angular (directional) integration is left unperformed

     We should actually talk  about the density of states "emerging" in an element of solid angle
           probability per one Energy unit  and per sterradian ....


      sc_3100.png

       sc_3100.png



    NEXT:   extended systems - fields - vibrations - EIGENMODES  / NORMAL MODES
                 Harmonic oscillator and Quanta  -  "second quantization"


to index             2016_10_26 Previous lecture             LECTURE NOTE   2016_10_27           2016_11_02 next lecture note