to index              2011.09.13 previous lecture note             LECTURE NOTE   2011.09.15           2011.09.20 next lecture note


Many Electron Atoms
 SCF and DFT 
The Self Consistent Field method we are now working with is in recent time often replaced by
a method originating from chemistry: Density Functional Theory
In practice they are very similar - DFT in applications is based on finding orbitals iteratively.
      1_DFT_Density_Functional_Theory_vs_SCF.png

       1_DFT_Density_Functional_Theory_vs_SCF.png
LINKS FOR DFT: Nobel prize in chemistry http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1998/
                            wikipedia: http://en.wikipedia.org/wiki/Density_functional_theory
                                  functional: http://en.wikipedia.org/wiki/Functional_(mathematics)


Qualitative and Quantitative applications of Hartree type theories


We shall look at systematics of ionization potentials and the "electron configurations"

      1b_Ionization_energies_tab.png

       1b_Ionization_energies_tab.png


To understand the origin of (1s)2 (2s) (2p)6 (3s)2 (3p)6   filled shell (the set (3d)10 does not make a shell)
we look at a model of the SCF

First the model:  Radial potentials (including the centrifugal barrier: (Screened Coulomb=model of Hartree )
                           The value of screening parameter alpha must be found empirically (must be Z-dependent )


      2__Coulomb_Centrifug_vs_Hartree_Centrifug.png

       2__Coulomb_Centrifug_vs_Hartree_Centrifug.png
   

 For Coulomb potential 3s 3p 3d have all the same energy. For other potentials
this is not true
      2_Coulomb_Centrifug_vs_Hartree_Centrifug.png

       2_Coulomb_Centrifug_vs_Hartree_Centrifug.png

 This drawing summarizes this point: the spectra of states in Hartree-type potential have the
 structur shown
      3_states_n_l_in_Hartree_PERIODIC_TABLE.png

       3_states_n_l_in_Hartree_PERIODIC_TABLE.png


Work with formal derivation of Hartree and Hartree-Fock theories

We need to evaluate the expectation value of the total energy in the SLATER DETERMINANT
(antisymmetrized independent particle - product state)

We started with revisiting the Helium excited state (done last time) - here in detail, showing the
difference between single particle operators and pair-particle operators


HELIUM ATOM ENERGY - as an example for Many=2
      4_Helium_energy_Slater.png

       4_Helium_energy_Slater.png

NEXT: 3 electrons,

LITHIUM ATOM ENERGY - as an example for Many=3
      5_Lithium_description.png

       5_Lithium_description.png


      5_expectation_value_single_particles_and_pairs.png

       5_expectation_value_single_particles_and_pairs.png


      5b_Lithium_terms_pairs.png

       5b_Lithium_terms_pairs.png

We can generalize the result
(the pair interaction can be discussed in more detail)
      9_Energy_Summary.png

       9_Energy_Summary.png

This result will be used to derive the SCF equations next time

Next time (following our 2010 notes - PDF  Many_Electrons_Atoms_2010.11.30.pdf   ):
         Pair interaction result in more detail

         Schrödinger equation from variational method
         Variational method - deriving Hartree-Fock Equations
         Hartree-Fock Equations
         Total energy and the selfconsistent orbital energies



to index              2011.09.13 previous lecture note             LECTURE NOTE   2011.09.15           2011.09.20 next lecture note