to index              2014.08.26 Previous Lecture Note             LECTURE NOTE   2014.08.28           2014.09.02 next lecture note


Helium - 28.08.2014


1. Evaluation of repulsion; Perturbation Theory; Multipole expansion
2. Pauli principle and Spin   -  Parahelium, Orthohelium

1. Evaluation of repulsion; Perturbation Theory; Multipole expansion

We start by mentioning the Fine structure constant - supplements atomic units;
It does express the "weakness" of electro(magnetic) interactions

Then we start looking at the numerical values from the last lecture - starting the perturbation theory
At the bottom of the frame - the spreadsheet of the numbers (this is expanded below)
      xcf_a010.png

       xcf_a010.png

Independent electrons with neglected repulsion      give 4*13.6*2 = 108.8 eV for the total binding of the
two electrons.

Further we shall look how the repulsion can be evaluated


      c000-product-function-perturbation.png

       c000-product-function-perturbation.png

Spreadsheet, includes the above reported repulsion contribution     5/8*27.2*Z eV
The variational method will be discussed in the next lectures

      A000-spreadsheet-energies.png

       A000-spreadsheet-energies.png


Perturbation theory

from astronomy, applied mathematics  -  http://en.wikipedia.org/wiki/Perturbation_theory- see also
http://en.wikipedia.org/wiki/Perturbation_theory_(quantum_mechanics)   
in particular (as sketched below)
                         http://en.wikipedia.org/wiki/Perturbation_theory_(quantum_mechanics)#First_order_corrections
(Note that the word "perturbation" is somewhat special; outside of mathematical sciences
"perturbed"    means     "thrown into a state of agitated confusion"     or     "worried or upset by something"


      xcf_a020.png

       xcf_a020.png

The energy correction (1. order)
is the same number as the EXPECTATION VALUE of the perturbation term
In 2-electron system (He and related IONS) this expectation value is a 6-dimensional integral

Here we sketch the evaluation, below we go shortly through the details
      xcf_a030.png

       xcf_a030.png



How to evaluate the EXPECTATION VALUE of the perturbation term - the electron-electron repulsion
In 2-electron system (He and related IONS) this expectation value is a 6-dimensional integral

      g010_Repulsion_term.png

       g010_Repulsion_term.png


General  method - valid for any pair of "orbitals"  (the electronic states are often called orbitals)
Multipole expansion, spherical harmonics.
An integral over any spherical harmonics (except of 00 ) over the sphere surface (4 pi) is allways ZERO
This follows from orthonormalization, for example

      g020_repulsion_6dim_to_double_radial.png

       g020_repulsion_6dim_to_double_radial.png


So this reduces to a double radial integration, and the radial 1s functions have a simple form.
The integrals of powers with exponentials are rather easily evaluated

      g030-radial-integration-steps.png

       g030-radial-integration-steps.png


Here we reproduce overview of the steps - dividing the integral into 2 terms according to what   r<   and   r> 
mean in different integration regions

      g040-double-integral-two-parts.png

       g040-double-integral-two-parts.png


The result has already been used above.
Note that the same approach can be used for ANY PAIR OF HYDROGEN-like ORBITALS

      g050-expansion_evaluated_to_17_Z_eV.png

       g050-expansion_evaluated_to_17_Z_eV.png






2. Pauli principle and Spin - Parahelium and Orthohelium



      c010-para-ortho.png

       c010-para-ortho.png


     Spectra of PARA and ORTHOHELIUM
 
    c020-levels-para-ortho.png

       c020-levels-para-ortho.png

Spectra of PARA and ORTHOHELIUM -detail
      c030-levels-para-ortho-large.png

       c030-levels-para-ortho-large.png

Exclusion principle - justified by the "identical particle exchange independence"
Currently most known as exchange symmetry
      xcf_a040.png

       xcf_a040.png


      xcf_a050.png

       xcf_a050.png


      xcf_a060.png

       xcf_a060.png



      c040-Pauli-exclusion-exchange.png

       c040-Pauli-exclusion-exchange.png


      c050-antisymmetry_PRODUCT_independent.png

       c050-antisymmetry_PRODUCT_independent.png


      c060-antisymmetry_j-j-coupling.png

       c060-antisymmetry_j-j-coupling.png

Next part: functions for two spins; origin of spin; singlet og triplet spin states

to index              2014.08.26 Previous Lecture Note             LECTURE NOTE   2014.08.28           2014.09.02 next lecture note