to index              2014.08.28 Previous Lecture Note             LECTURE NOTE   2014.09.02           2014.09.18 next lecture not


Helium - Parahelium and Orthohelium    -  Spin Angular Momentum
Exchange interaction - Ferromagnetism

see also        ../2013_09_05/index.html      ( and to spome extent also  ../2013_09_10/index.html )
             and  ../2012_09_20/index.html    as well as   ../2011_09_08/index.html
             (    open the links in new tabs / windows  for easier work )

In this lecture we need first to review some points on ANGULAR MOMENTUM in quantum mechanics.
(  look at http://en.wikipedia.org/wiki/Angular_momentum_operator  )
Angular momentum is well known from classical mechanical problems
We experience it in various forms also in everyday life
( a good review in http://en.wikipedia.org/wiki/Angular_momentum )

Commutators, operators, Levi-Civita epsilon.  Levi-Civita epsilon useful for definition of VECTOR PRODUCT
http://en.wikipedia.org/wiki/Levi-Civita_symbol#Three_dimensions_2
and also other parts of the text http://en.wikipedia.org/wiki/Levi-Civita_symbol

Spin operator behaves as (is constructed to behave as) angular momentum - in terms of commutators,
"vector product with itself"

Pauli matrices   (multiplication by h-bar ! )
( this link might be useful: http://en.wikipedia.org/wiki/Spin_(physics)#Mathematical_formulation  )


      xcf_010.png

       xcf_010.png

Pauli matrices - Spin operators
Addition of two angular momenta  - Addition of 2 SPINS
(  this article is somewhat useful, in general: http://en.wikipedia.org/wiki/Angular_momentum_coupling
Another illustration at this level: http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/vecmod.html

There are many texts at more mathematical level.
Clebsch-Gordan Coefficients text http://en.wikipedia.org/wiki/Clebsch%E2%80%93Gordan_coefficients
contains useful text, unfortunately the authors have gone crazy with mathematics
( we should know http://en.wikipedia.org/wiki/Clebsch%E2%80%93Gordan_coefficients#Tensor_product_space
but with a simpler notation usual in physics )

For 2 spins - SYMMETRIC and ANTISYMMETRIC combinations - TRIPLET and SINGLET
      xcf_020.png

       xcf_020.png

Addition of two angular momenta  - Addition of 2 SPINS - TRIANGLE CONDITION
Conservation of SUM OF 2 ANGULAR MOMENTA

For 2 spins - TRIPLET and SINGLET
      xcf_030.png

       xcf_030.png

      a0010_2_spin_antisym_singlet_sym_triplet.png

       a0010_2_spin_antisym_singlet_sym_triplet.png


      a0020_singlet_triplet_-2-SPIN.png

       a0020_singlet_triplet_-2-SPIN.png


      a0030_orthohelium_triplet_lower_energy.png

       a0030_orthohelium_triplet_lower_energy.png


      a0040_orthohelium_triplet_REPULSION_REDUCED.png

       a0040_orthohelium_triplet_REPULSION_REDUCED.png


      xcf_040.png

       xcf_040.png


      a0050_effective_symmetry_SPIN-SPIN-interaction.png

       a0050_effective_symmetry_SPIN-SPIN-interaction.png


      a0060_effective_symmetry_SPIN-SPIN-interaction.png

       a0060_effective_symmetry_SPIN-SPIN-interaction.png

    NEXT LECTURE
      xcf_049.png

       xcf_049.png

to index              2014.08.28 Previous Lecture Note             LECTURE NOTE   2014.09.02           2014.09.18 next lecture note