In this lecture 1. Exponential decay from constant rate 2. Natural line width 3. Density of states - for light waes ( photons ) 4. Eigenmodes of harmonic systems (coupled oscillations) |
1. Exponential decay from constant rate we must modify the constant rate - depends also on "how much is left" |
1000_Constant_RATE-decay.png
1000_Constant_RATE-decay.png |
Exponential decay from constant rate and Natural line width part 1 - from the exponential decay result |
1010_Exponential_Decay_Line_width.png
1010_Exponential_Decay_Line_width.png |
The assumption of perturbation theory can not be kept ( c0 = 1 must be replaced by square root of probability - look above ) Exponential decay from constant rate -----> Natural line width |
1020_Line_Width_replaces_Dirac_Delta.png
1020_Line_Width_replaces_Dirac_Delta.png |
The curve (spectral line) shape above is called Lorentzian shape; as opposed to random background phenomena - Gaussian shape ( G(E, E0) =) exp(- (E - E0)^2 / Delta^2 ) Natural line width (Lorentz shape) |
1030-Summary-Line_Width_NO_Dirac.png
1030-Summary-Line_Width_NO_Dirac.png |
Density of states - for light waves ( photons ) - Discretization by periodic boundary conditions The density of states appears whenever we replace a summation by an integral This is always so: summation ---> integral allways needs "density of states" (also in the Golden Rule derivation last time) Dimensional argument |
1100_Density_of_states.png
1100_Density_of_states.png |
Density of states - for light waes ( photons ) Discretization by periodic boundary conditions |
1120_Density_in_K-space_to-Energy.png
1120_Density_in_K-space_to-Energy.png |
Eigenmodes of harmonic systems (coupled oscillations) Formal transformation of the total energy |
1140_Eigenmodes_Coupled_Harmonic_oscillations.png
1140_Eigenmodes_Coupled_Harmonic_oscillations.png |
Eigenmodes of harmonic systems (coupled oscillations) Formal transformation of the total energy |
1150_Eigenmodes_via_transformations.png
1150_Eigenmodes_via_transformations.png |
Eigenmodes of harmonic systems (coupled oscillations) Formal transformation of the total energy |
1160_Eigenmodes_via_transformations.png
1160_Eigenmodes_via_transformations.png |
Eigenmodes of harmonic systems (coupled oscillations) Formal transformation of the total energy |
1170_Eigenmodes_via_transformations.png
1170_Eigenmodes_via_transformations.png |
Example: N balls connected by springs - coupled oscillations |
1180_Eigenmodes_N-balls-example.png
1180_Eigenmodes_N-balls-example.png |
Example: N balls connected by springs - coupled oscillations |
1190_Eigenmodes_N-balls-example_Matrix.png
1190_Eigenmodes_N-balls-example_Matrix.png |
Finding the eigenmodes - means expressing the system energy (hamiltonian) as a system of independent harmonic oscillators |
1195_Eigenmodes_N-balls-example_amplitudes.png
1195_Eigenmodes_N-balls-example_amplitudes.png |
Finding the eigenmodes - means expressing the system energy (hamiltonian) as a system of independent harmonic oscillators |
1200_Eigenmodes_summary_Harmonic_oscillator.png
1200_Eigenmodes_summary_Harmonic_oscillator.png |
Algebraic method for the Harmonic oscillator - Creation and annihilation of "energy quanta" The following three slides were just previewed; This will be detailed NEXT TIME |
1220_Harmonic_Oscillator_Creation_Annihilation.png
1220_Harmonic_Oscillator_Creation_Annihilation.png |
Algebraic method for the Harmonic oscillator - Creation and annihilation of "energy quanta" Here just previewed; This will be detailed NEXT TIME |
1230_Harmonic_Oscillator_Creation_Annihilation.png
1230_Harmonic_Oscillator_Creation_Annihilation.png |
Algebraic method for the Harmonic oscillator - Creation and annihilation of "energy quanta" Only previewed; This will be detailed NEXT TIME |
1250_Harmonic_Oscillator_Creation_Annihilation.png
1250_Harmonic_Oscillator_Creation_Annihilation.png |
Algebraic method for the Harmonic oscillator - Creation and annihilation of "energy quanta" The last three slides will be detailed NEXT TIME |