to index             2016_09_14 Previous lecture             LECTURE NOTE   2016_09_15           2016_09_21 next lecture note

   
      Many-electron atoms - part 1.


   Hund's rule - about spin states; in Carbon it is simply the same as triplet

      0005_Hunds_rule.png

       0005_Hunds_rule.png

 
    Number of states in each shell ( n, l, m, ms   )        Closed shells - highest ionization energy

      0006_numbers_of_states.png

       0006_numbers_of_states.png


  Closed shells - highest ionization energy   - but it does not follow Z= 2, 10, 28, 60,  ......
                                                                                               but     Z= 2, 10, 18, 36,  ......

      0007_ionization-energies-potentials.png

       0007_ionization-energies-potentials.png


       Here are the first ionization potentials and electron configurations for elements up to 58

      0009_configurations_to_Argon.png

       0009_configurations_to_Argon.png

 
   ionization potentials and electron configurations ....
 
      0010_configurations_to_Krypton.png

       0010_configurations_to_Krypton.png

 
   ionization potentials and electron configurations ....
 
      0012__configurations_to_Xenon.png

       0012__configurations_to_Xenon.png


    Why does the  4s   fill  before  3d?   i.e.        E4s   <   E3d             E5s   <   E4d            E5s   <   E4f         
                                                                                                                              Hydrogen like    Enl  = - Z n -2  E0  independent of L
             Because the potential energy of the "last electron" is not  the   r-1  , not  Hydrogen like   (see the screening  discussion further down)

    Radial potentials with added "centrifugal term", i.e. the kinetic energy of rotation, from angular momentum
    Coulomb compared with the screened potential   -  note that Coulomb accomodates the     Enl    independent of L
    Clearly, the screened can not give the same behaviour of    Enl     - so it must depend on L  - and there is a dramatic change
                                                                                                               from L=1    to   L=2    (  and larger L )

      0013_Screened_potential_explains_d-states.png

       0013_Screened_potential_explains_d-states.png


  The above superimposed

      0014_Screened_potential_superimposeds.png

       0014_Screened_potential_superimposeds.png

 
     The shape - a model - for the screened potential
 
      0016_Coulomb_Centrifugal_screened.png

       0016_Coulomb_Centrifugal_screened.png

 
     The shape - a model - for the screened potential explained.   Close to the nucleus - only the Z-charges Coulomb force
                                                                                                       Far away - the "last electron"  sees only charge 1
                                                                                                       the transition - exponential function damping ( model ! )
 
     Also discussed the concept  " classical turning point "
 
      0018_Screened_potential.png

       0018_Screened_potential.png


      Interaction with a "charged cloud" - towards the selfconsistent potential model

      0020_Interaction_with_a_charged_cloud.png

       0020_Interaction_with_a_charged_cloud.png

 
  Charged density from probability density - electrons in occupied orbitals
  The Schrödinger equation must be solved for obtaining all the orbitals
 
 
      0110_SCF_1.png

       0110_SCF_1.png

 
   Iteration scheme
 
      0120_SCF_2.png

       0120_SCF_2.png

        
      0130_SCF_3.png

       0130_SCF_3.png

 
   Iteration scheme    -  how to stop it  -  when the potantial and the orbitals are "self consistent"
 
      0140_SCF_4.png

       0140_SCF_4.png


     The above Hartree - inspired construction is a qualitative and intuitive efficient model - can it be derived precisely?

     Formal derivation of many-electron madel - Hartree-Fock method

      This starts by evaluation of expectation value for the hamiltonian
      Helium   N=2
      Lithium   N=3        -  and general N          antisymmetric function for N-fermions

      0200_SThis is based on elf_consistent_formal_derivation.png

       0200_Self_consistent_formal_derivation.png

     Helium already discussed in a previous lecture
      0210_Helium.png

       0210_Helium.png


       Slater Determinant   
                                                                 PERMUTATIONS, Combinatorics, number of permutations of N objects   N!

      0220_Determinant_Slater.png

       0220_Determinant_Slater.png

   
      0230_Slater_3x3.png

       0230_Slater_3x3.png


                    above  - permutations   -  odd and  even

      Lithium case  - there are many  terms  (118 pair terms - how to organize them )

      0240_Lithium.png

       0240_Lithium.png



     Next time:   Lithium     and       N > 3  - general case


to index             2016_09_14 Previous lecture             LECTURE NOTE   2016_09_15           2016_09_21 next lecture note