Many-electron atoms - part 1. |
Hund's rule - about spin states; in Carbon it is simply the same as triplet |
0005_Hunds_rule.png
0005_Hunds_rule.png |
Number of states in each shell ( n, l, m, ms ) Closed shells - highest ionization energy |
0006_numbers_of_states.png
0006_numbers_of_states.png |
Closed shells - highest ionization energy - but it does not follow Z= 2, 10, 28, 60, ...... but Z= 2, 10, 18, 36, ...... |
0007_ionization-energies-potentials.png
0007_ionization-energies-potentials.png |
Here are the first ionization potentials and electron configurations for elements up to 58 |
0009_configurations_to_Argon.png
0009_configurations_to_Argon.png |
ionization potentials and electron configurations .... |
0010_configurations_to_Krypton.png
0010_configurations_to_Krypton.png |
ionization potentials and electron configurations .... |
0012__configurations_to_Xenon.png
0012__configurations_to_Xenon.png |
Why does the 4s fill before 3d? i.e. E4s < E3d E5s < E4d E5s < E4f Hydrogen like Enl = - Z n -2 E0 independent of L Because the potential energy of the "last electron" is not the r-1 , not Hydrogen like (see the screening discussion further down) Radial potentials with added "centrifugal term", i.e. the kinetic energy of rotation, from angular momentum Coulomb compared with the screened potential - note that Coulomb accomodates the Enl independent of L Clearly, the screened can not give the same behaviour of Enl - so it must depend on L - and there is a dramatic change from L=1 to L=2 ( and larger L ) |
0013_Screened_potential_explains_d-states.png
0013_Screened_potential_explains_d-states.png |
The above superimposed |
0014_Screened_potential_superimposeds.png
0014_Screened_potential_superimposeds.png |
The shape - a model - for the screened potential |
0016_Coulomb_Centrifugal_screened.png
0016_Coulomb_Centrifugal_screened.png |
The shape - a model - for the screened potential explained. Close to the nucleus - only the Z-charges Coulomb force Far away - the "last electron" sees only charge 1 the transition - exponential function damping ( model ! ) Also discussed the concept " classical turning point " |
0018_Screened_potential.png
0018_Screened_potential.png |
Interaction with a "charged cloud" - towards the selfconsistent potential model |
0020_Interaction_with_a_charged_cloud.png
0020_Interaction_with_a_charged_cloud.png |
Charged density from probability density - electrons in occupied orbitals The Schrödinger equation must be solved for obtaining all the orbitals |
0110_SCF_1.png
0110_SCF_1.png |
Iteration scheme |
0120_SCF_2.png
0120_SCF_2.png |
|
0130_SCF_3.png
0130_SCF_3.png |
Iteration scheme - how to stop it - when the potantial and the orbitals are "self consistent" |
0140_SCF_4.png
0140_SCF_4.png |
The above Hartree - inspired construction is a qualitative and intuitive efficient model - can it be derived precisely? Formal derivation of many-electron madel - Hartree-Fock method This starts by evaluation of expectation value for the hamiltonian Helium N=2 Lithium N=3 - and general N antisymmetric function for N-fermions |
0200_SThis
is based on elf_consistent_formal_derivation.png 0200_Self_consistent_formal_derivation.png |
Helium already discussed in a previous lecture |
0210_Helium.png
0210_Helium.png |
Slater Determinant PERMUTATIONS, Combinatorics, number of permutations of N objects N! |
0220_Determinant_Slater.png
0220_Determinant_Slater.png |
|
0230_Slater_3x3.png
0230_Slater_3x3.png |
above - permutations - odd and even Lithium case - there are many terms (118 pair terms - how to organize them ) |
0240_Lithium.png
0240_Lithium.png |
Next time: Lithium and N > 3 - general case |