charge_in_elmag_marked-2014.11.06.pdf
is
an
extra
text
on
Charged
Particles
In
an
Elmag. Field
Light_Atom-marked-2014.11.06.pdf Is the presentation with handwritten lecture comments and markings Most of these are captured (and edited) below and commented further This is roughly the structure of the index page which we touched in this lecture - see the capture just below |
||||
|
||||
The above table is roughly the structure of the index page which we touched in this lecture - see the capture just below |
||||
0000_notes-plan.png
0000_notes-plan.png |
||||
Extra
on CHARGED PARTICLE IN TIME-DEPENDENT ELECTRO-MAGNETIC FIELD charge_in_elmag_marked-2014.11.06.pdf |
||||
0010_Lorentz_Force.png
0010_Lorentz_Force.png |
||||
charge_in_elmag_marked-2014.11.06.pdf | ||||
0020_Lagrange_for_elmag_to_hamilton_1.png
0020_Lagrange_for_elmag_to_hamilton_1.png |
||||
All these are from charge_in_elmag_marked-2014.11.06.pdf | ||||
0030_Lagrange_for_elmag_to_hamilton.png
0030_Lagrange_for_elmag_to_hamilton.png |
||||
THE ABOVE - extra on CHARGED PARTICLE IN TIME-DEPENDENT ELECTRO-MAGNETIC FIELD |
||||
How to quantize the fields - find the EIGENMODES Each EIGENMODE - independent HARMONIC OSCILLATOR Each oscillator its CREATION and ANNIHILATION of QUANTUM - Eigenmodes for coupled vibrations. (last lecture ../2014_11_04/index.html) see also 2013 lectures ../2013_10_29/index.html Algebraic Method for Harm. Oscillator in the notes |
||||
algebraic_HO_010.png
algebraic_HO_010.png |
||||
Just by
rewriting - in terms of DIMENSIONLESS P,Q
-
we
get
easy
way to operators
(just algebra) a,
a+ |
||||
algebraic_HO_020.png
algebraic_HO_020.png |
||||
working
with
commutators
-
NUMBER
OPERATOR -- simply a
combination N
=
a+
a
what are the properties of this operator? Apply it - it then gives the "number of quanta" |
||||
algebraic_HO_030.png
algebraic_HO_030.png |
||||
number
of
quanta
---
LADDER
OPERATORS
uppwards a+
and downwards
a
----
N
=
a+
a
|
||||
algebraic_HO_040.png
algebraic_HO_040.png |
||||
The states of the H.O. - or of the MODE of vibration ( wave) Different numbers of quanta Ground state - zero quanta present |
||||
algebraic_HO_050_Creation_annihilation.png
algebraic_HO_050_Creation_annihilation.png |
||||
QUANTIZATION OF ELECTROMAGNETIC FIELD The energy expression - two ways (EQ. 41 - and the next slide ) A operator expressed in eigenmodes' creation and anninilation operators |
||||
E001_vector_pot_operator_ELMAG_field.png
E001_vector_pot_operator_ELMAG_field.png |
||||
WHAT DETERMINES THE CONSTANT ABOVE ?? SEE NEXT SLIDE |
||||
E010_determine_constant_fact_ELMAG.png
E010_determine_constant_fact_ELMAG.png |
||||
STATES OF THE FIELD - in terms of quanta of eigenmodes |
||||
E011.png
E011.png |
||||
DENSITY of states |
||||
E015_Density_of_states.png
E015_Density_of_states.png |
||||
---- | ||||
E018_Density_of_states.png
E018_Density_of_states.png |
||||
SEE THE GENERAL PART IN THE START (additional background note charge_in_elmag_m arked-2014.11.06.pdf ) |
||||
E020_charge_field_interaction.png
E020_charge_field_interaction.png |
||||
DIPOLE APPROXIMATION |
||||
F_005_Dipole_approximation.png
F_005_Dipole_approximation.png |
||||
DIPOLE APPROXIMATION both removes the wave-like factor and replaces "velocity" by position - dipole |
||||
F_008_Dipole_approximation_R-M.E..png
F_008_Dipole_approximation_R-M.E..png |
||||
above "drawing" - position - dipole - illustration induced dipole story ( electric field 'polarizes' atoms; induced dipole - position of the electron ) FINAL APPLICATION OF FERMI's GOLDEN RULE |
||||
F_010_Emission.png
F_010_Emission.png |
||||
INSERTED the interaction atom - field (electron - field ) |
||||
F_020_Emission.png
F_020_Emission.png |
||||
insert density of states result, constants |
||||
G_010-evaluation.png
G_010-evaluation.png |
||||
THE OVER ALL STRUCTUR OF THE MATRIX ELEMENT |
||||
G_020-evaluation_MATRIX_ELEMENT.png
G_020-evaluation_MATRIX_ELEMENT.png |
||||
EMISSION IS DIFFERENT IN DIFFERENT DIRECTIONS ( THE DIPOLE VECTOR ) NOTE THE ANGULAR INTEGRATION - AVERAGING one slide further down |
||||
G_030-evaluation_with_anles.png
G_030-evaluation_with_anles.png |
||||
NOTE THE ANGULAR INTEGRATION - AVERAGING |
||||
G_040-evaluation_final.png
G_040-evaluation_final.png |
||||
The final result - HOW DOES IT SCALE with the atomic number Z |