to index              2014_11_04 Previous Lecture Note             LECTURE NOTE   2014_11_06           2014_11_20 next lecture note


 Light - Atom interaction   Part III    

charge_in_elmag_marked-2014.11.06.pdf     is an extra text  on  Charged Particles In an Elmag. Field
     
Extra on     
                              CHARGED PARTICLE IN TIME-DEPENDENT  ELECTRO-MAGNETIC FIELD


Light_Atom-marked-2014.11.06.pdf        Is the presentation with handwritten lecture comments and markings
                                                                Most of these are captured (and edited) below and commented further

This is roughly the structure of the index page which we touched in this lecture - see the capture just below





See also generally:
      ../2013_10_29/index.html
      Last year's lectures
Eigenmodes for coupled vibrations. (last lecture)
see also 2013 lectures
../2013_10_29/index.html
Algebraic Method for Harm. Osc. (see the notes!)
Quant. th. of extended systems - fields
Electromagnetic fields
The Quant Th. of Elmag. Field
Density of States
Charged Particles In an Elmag. Field
charge_in_elmag_marked-2014.11.06.pdf
The Hamiltonian of Interaction
Emission of Radiation by Excited Atom
   (see already the last lecture)
    see also  http://web.ift.uib.no/~ladi/Fysisk/Teori/Pictures/Golden.html
The matrix element reduction
Dipole Approximation
Detailed Evaluation of Emission rate

  
      The above table is roughly the structure of the index page which we touched in this lecture - see the capture just below


      0000_notes-plan.png

       0000_notes-plan.png

Extra on     
                              CHARGED PARTICLE IN TIME-DEPENDENT  ELECTRO-MAGNETIC FIELD

charge_in_elmag_marked-2014.11.06.pdf
      0010_Lorentz_Force.png

       0010_Lorentz_Force.png

charge_in_elmag_marked-2014.11.06.pdf
      0020_Lagrange_for_elmag_to_hamilton_1.png

       0020_Lagrange_for_elmag_to_hamilton_1.png

All these are from charge_in_elmag_marked-2014.11.06.pdf
      0030_Lagrange_for_elmag_to_hamilton.png

                                            0030_Lagrange_for_elmag_to_hamilton.png
   
THE ABOVE - extra on      CHARGED PARTICLE IN TIME-DEPENDENT  ELECTRO-MAGNETIC FIELD



How to quantize the fields - find the EIGENMODES

Each  EIGENMODE   - independent HARMONIC OSCILLATOR

Each oscillator its CREATION and ANNIHILATION of QUANTUM  
                        - Eigenmodes for coupled vibrations. (last lecture ../2014_11_04/index.html)
                          see also 2013 lectures
                           ../2013_10_29/index.html
                                                                       Algebraic Method for Harm. Oscillator              in the notes

      algebraic_HO_010.png

       algebraic_HO_010.png

Just by rewriting - in terms of DIMENSIONLESS  P,Q    -  we  get easy way  to    operators (just algebra)   a, a+
      algebraic_HO_020.png

       algebraic_HO_020.png

     working with commutators   -  NUMBER OPERATOR     --   simply a combination    N  =  a+ a      
     what  are the properties of this operator?
     Apply  it  -  it then gives the "number of quanta"
      algebraic_HO_030.png

       algebraic_HO_030.png

      number of quanta      ---     LADDER OPERATORS   uppwards   a+     and   downwards     a         ----    N  =  a+ a 
      algebraic_HO_040.png

       algebraic_HO_040.png


   The states of the H.O.   -  or of the MODE of vibration ( wave)
    Different numbers of quanta
    Ground state - zero quanta present

      algebraic_HO_050_Creation_annihilation.png

       algebraic_HO_050_Creation_annihilation.png


      QUANTIZATION OF ELECTROMAGNETIC FIELD

      The energy expression   -   two ways       (EQ. 41  -  and the next slide )

      A operator expressed in eigenmodes'  creation and anninilation operators

      E001_vector_pot_operator_ELMAG_field.png

       E001_vector_pot_operator_ELMAG_field.png


   WHAT DETERMINES THE CONSTANT ABOVE ??
   SEE NEXT SLIDE

      E010_determine_constant_fact_ELMAG.png

       E010_determine_constant_fact_ELMAG.png

    
  STATES OF THE FIELD   -   in terms of quanta of eigenmodes

      E011.png

       E011.png


DENSITY of states

      E015_Density_of_states.png

       E015_Density_of_states.png

----
      E018_Density_of_states.png

       E018_Density_of_states.png

 
                SEE THE GENERAL PART IN THE START
                                                                                 (additional background note            charge_in_elmag_m
arked-2014.11.06.pdf     )
      E020_charge_field_interaction.png

       E020_charge_field_interaction.png


             DIPOLE APPROXIMATION

      F_005_Dipole_approximation.png

       F_005_Dipole_approximation.png

 
           DIPOLE APPROXIMATION      both  removes the  wave-like factor  and  replaces "velocity"  by position  - dipole

      F_008_Dipole_approximation_R-M.E..png

       F_008_Dipole_approximation_R-M.E..png


      above "drawing"   -  position  - dipole - illustration      induced dipole  story  ( electric field 'polarizes' atoms; induced dipole - position of the electron  )


      FINAL APPLICATION OF FERMI's GOLDEN RULE


      F_010_Emission.png
        F_010_Emission.png

 
     INSERTED   the interaction   atom - field  (electron - field )

      F_020_Emission.png

       F_020_Emission.png

 
    insert density of states result, constants

      G_010-evaluation.png

       G_010-evaluation.png


            THE OVER ALL STRUCTUR OF THE  MATRIX ELEMENT

      G_020-evaluation_MATRIX_ELEMENT.png

       G_020-evaluation_MATRIX_ELEMENT.png


                 EMISSION  IS DIFFERENT IN DIFFERENT DIRECTIONS     ( THE DIPOLE VECTOR  )

                              NOTE THE ANGULAR  INTEGRATION  -  AVERAGING    one  slide further down

      G_030-evaluation_with_anles.png

       G_030-evaluation_with_anles.png


           NOTE THE ANGULAR  INTEGRATION  -  AVERAGING

      G_040-evaluation_final.png

       G_040-evaluation_final.png



    The final result -  HOW DOES IT SCALE     with the atomic number  Z    


to index              2014_11_04 Previous Lecture Note             LECTURE NOTE   2014_11_06           2014_11_20 next lecture note