to index             2016_09_07 Previous lecture             LECTURE NOTE   2016_09_08           2016_09_14 next lecture note

Helium part 3


     In this lecture we started by reviewing some of the last lecture, but concentrating mainly on the approximations
     While the ortho - para problem from last lecture is about the EXCITED STATES of helium, this lecture is mainly
     on the GROUND STATE, i.e. the two electrons are as much bound as possible, both close to the

              1s state hydrogen-like with  - with nucleus charged Z-times       --   for helium  Z=2


       Homework: consider the statement:
                The triplet states   (type 1s nl )    (orthohelium) are more bound (deeper bound) than corresponding
                      singlet states   (smae 1s nl ) (parahelium)
                      Thus all the orthohelium lines have all slightly shorter wavelength (higher transition energy)
                       then the corresponding  parahelium lines
                You should be able to explain this statement.

                Below is the plate used for discussion, there is also a copy (cut) from 2015 plate: ../2015_08_27/0320_ortho_para_helium.png
                in the last year's lecture  ../2015_08_27/index.html
      
      0002_triplet_singlet_revisited.png
    
       0002_triplet_singlet_revisited.png                                                         2015_ortho_para_helium.png
                                                                                                                     
                                        


     We recall the energy - hamiltonian of previous lecture  - the separation into "two hydrogen-like 1 electron subsystems"
                                       -  when the electron - elctron energy   V12  was left out

      Now we do the "1. order energy perturbation theory"  with the same wavefunction: 2 1s electrons with Z=2

     This is done by evaluating the expectation value.

      0010_approximations_repulsion_perturbation.png

       0010_approximations_repulsion_perturbation.png


      The repulsion integral  -  using multipole expansion

      0013_repulsion_expect_evaluate.png

       0013_repulsion_expect_evaluate.png


    The evaluation is simple, but it takes lots of time

      0015_repulsion_expect_evaluate.png

       0015_repulsion_expect_evaluate.png


   Angular inegrals are all zero due to the      1s  -->      L=0  M= 0      except tre one with  L=0  M= 0   - which is ONE as indicated

   The radial intgration - with the meaning of the symbols  r>     and    r< 
      
      0016_repulsion_expect_RADIAL.png

       0016_repulsion_expect_RADIAL.png


    The evaluation is simple, but many steps ...

      0018_repulsion_expect_RADIAL.png

       0018_repulsion_expect_RADIAL.png


       Here is the summary of the evaluation

      0019_repulsion_expect_FINAL.png

       0019_repulsion_expect_FINAL.png


       For any Z value the 2 electrons in 1s state each have expectation value of their repulsion given by the expression above.

       Below we compare with experiment    2x (1s)   means   the simple hydrogen-like, with Z=2 and without  repulsion
                                                                  adding  the expectation value of the repulsion - much closer to observed values

       Note: the energy of netral HJe = 1. ionization potential  + second ionization potential   - as indicated

       Towards the end:  suggesting "Effective Z"

      0030_approximations_repulsion_perturbation.png

       0030_approximations_repulsion_perturbation.png


      The idea of effective Z  - but how to find that Z   ?
     
      General theorem comes to help:   expectation value of energy in the ground stat is smaller (or equal)
                                                            THAN  for ANY   state, whasover, whether it only peaks over the deepest potential regions, whatver

      0040_Theorem_for_minimalization.png

       0040_Theorem_for_minimalization.png

 
           The above theorem is the basis for variational method - stated below

           We use parametric dependence  -  search for best function -->  search for minimum    Zeff --> z  variable

      0050_varying_the_wavefunction.png

       0050_varying_the_wavefunction.png


      The actors  -  1s state, kinetic and potential energy;

       Z - dependence  and   z- dependence                           The nucleus has Z, the wavefunction has   z  

      0055_variational_method.png

       0055_variational_method.png


               Z - dependence  and   z- dependence                           The nucleus has Z, the wavefunction has   z

               Here we derived             Zeff      -->     z = Z - 5/16       ( in He   the    Zeff   is about  1.7 )
        
      0060_variational_done.png

       0060_variational_done.png

 
    Comparison of the numbere, results       2x (1s)   means   the simple hydrogen-like, with Z=2 and without  repulsion
                          and   "1. order energy perturbation theory"  with the same wavefunction: 2 1s electrons with Z=2     i.e.  + 5/8 Z
                          and Variational  - above

      0067_

results_eV.png                                                                                                                                                                    
      0069_results_a.u.png
           
 



     NEXT:       Better  variational - more advanced searches   -  and variations with correlations

                                  configuration mixing, other 2-electron ions

to index             2016_09_07 Previous lecture             LECTURE NOTE   2016_09_08           2016_09_14 next lecture note